Supercomputing and Opensource after the K-Computer

Christian Külker

Debian Edu/ Skolelinux

v0.1 2012-03-18

Christian Külker (Debian Edu)

SC and OSS after K-Computer

Contents

- What is a supercomputer?
- 2 Definition
- 3 Top500/Green Top500
- Hardware: The K computer
- Software: How it is normally done?
- Software: How was it done for the K computer?
 - Hardware: Interconnects
- 8 Your Laptop is a Supercomputer
- 9 SC11

What is a supercomputer?

- A Supercomputer a big computer
- »Super« stands for something extraordinary in terms of performance
- A unambiguous definition do not exist, because the method of measuring the performance (speed of calculation) is not possible on all high performace computers in the same manner
- A popular definition is, at least all computers out of the Top500 and GreenTop500 list are Supercomputers.

- Scalar processors <70th
- Vector processors >70th mid 80th
- Parallel processing mid 80th 90th
- Custom made processors (APE) and commodity processors (Intel, AMD, Alpha, ...)
- modern supercomputers highly-tuned computer clusters using commodity processors combined with custom interconnects
- CPU/GPU and other accelerators (FPGA, ...)
- Different coupling (Strong: APEmille, Loose: Cluster)
- Different Networks (Ethernet, Infiniband, Torus, Mesh, ...)

Top500/Green Top500

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- The Top500 provides rankings of the most powerful supercomputers in the world.
- GFLOPS, TFLOPS, PFLOPS
- http://www.top500.org

4 A N

- E 🕨

#	Name	OEM	Country	Cores	Rmax	Eff.	Processor	OS	Accel.
1	K computer	Fujitsu	Japan	705024	10.510	93.17	SPARC64	Linux	None
2	Tianhe-1A	NUDT	China	186368	2.566	54.58	Xeon	Linux	NVIDIA
3	Jaguar	Cray Inc.	USA	224162	1.759	75.46	Opteron	Linux	None
4	Nebulae	Dawning	China	120640	1.271	42.59	Xeon	Linux	NVIDIA
5	Tsubame 2.0	NEC/HP	Japan	73278	1.192	52.11	Xeon	Linux	NVIDIA
6	Cielo	Cray Inc.	UŚA	142272	1.110	81.27	Opteron	Linux	None
7	Pleiades	SGI	USA	111104	1.088	82.72	Xeon	Linux	None
8	Hopper	Cray Inc.	USA	153408	1.054	81.79	Opteron	Linux	None
9	Tera-100	Bull SA	France	138368	1.050	83.7	Xeon	Linux	None
10	Roadrunner	IBM	USA	122400	1.042	75.74	PowerXCell	Linux	IBM

Rmax [PFLOPS], Eff. [%]

- Green 500 (http://www.green500.org)
- In the context of The Green500 List, a supercomputer is a computing system that is fast enough to appear of the latest Top500 List.
- In the context of The Little Green500 List, a supercomputer is a computing system that achieves performance on the HPL benchmark at a high-enough level to have secured entry into the oldest Top500 list released within 19 months.
- http://www.green500.org/docs/pubs/RunRules_Ver0.9.pdf

Green Top500 - Environmentally Responsible Supercomputing

- The Green500 provides rankings of the most energy-efficient supercomputers in the world.
- raise awareness about power consumption,
- alternative performance metrics
- MFLOPS/W (Example IBM Blue Gene/Q 2026 MFLOPS/W)

- (1) aggregating many low-power processors like IBM BlueGene/Q mostly from the embedded world
- (2) using energy-efficient accelerators, typically from the gaming/graphics market, e.g., AMD Radeon GPU, NVIDIA Tesla Fermi GPU, Cell, and Intel Knights Corner
- => http://www.green500.org/

Hardware: The K computer

The 京Computer

- named for the Japanese word "kei" (京), meaning 10 quadrillion (German: 10 Billiarden, 10 Peta).
- installed at the RIKEN Advanced Institute for Computational Science (AICS) campus in Kobe, Japan.

Active	Operational June 2011						
Sponsors	MEXT, Japan Japan						
Operators	Fujitsu						
Location	RIKEN Advanced Institute for Computational Science						
Architecture	88,128 SPARC64 VIIIfx processors,						
	Tofu interconnect						
	Linux-based enhanced operating system						
Speed	10.51 petaflops (Rmax)						
Ranking	TOP500: 1, November 2011						
=> http://en.wikipedia.org/wiki/K_computer							

æ

- uses 88,128 2.0GHz 8-core SPARC64 VIIIfx processors
- packed in 864 cabinets
- a total of 705,024 cores
- 45 nm CMOS technology
- Each cabinet contains 96 computing nodes
- 6 I/O nodes.
- a computing node contains a single processor and 16 GB of memory

Software: How it is normally done?

- build computer
- find users
- develop or port software
- run software
- improve software

Software: How was it done for the K computer?

- find problems
- find users
- develop or port software
- build small subset of computer
- run software on a small set, evaluate
- build real computer
- improve software

K Computer Software Goals

- Analyzing the behavior of nanomaterials through simulations and contributing to the early development of such next-generation semiconductor materials, particularly nanowires and carbon nanotubes
- Predicting which compounds, from among a massive number of drug candidate molecules, will prevent illnesses by binding with active regions on the proteins that cause illnesses
- Simulating the actions of atoms and electrons in dye-sensitized solar cells (higher energy efficiency)
- Simulating seismic wave propagation and tsunamis to predict the effects they will have on human-made structures (design of quake-resistant structures)
- Conducting high-resolution (400-m) simulations of atmospheric circulation models to provide detailed predictions of weather phenomena

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Program	Fields	Application Overview	Techniques
NICAM	Earth Science	Nonhydrostatic icosahedral atmospheric model	FDM (atmosphere)
Seism3D	Earth Science	Seismic wave propagation / strong seismic motion simulation	FDM (wave motion)
PHASE	Nanoscience	Plane wave expansion first-principle molecular dy- namics analysis	plane wave DFT
FrontFlow/Blue	Engineering	Unsteady flow analysis based on large eddy simulation (LSE)	FEM (fluid)
RSDFT	Nanoscience	Real-space first-principle molecular dynamics calculation	real-space DFT
LatticeQCD	Physics	Lattice QCD simulation based elementary particle and nucleus research	QCD

2

Hardware: Interconnects

- Link technologies: ethernet, infiniband, custom
- Links topologies: star, ring, fat tree, ..., torus
- 3D/6D Torus
- Challanges: fault/error tollerance

Your Laptop is a Supercomputer

- Compiling and Linking MPI Programs
- Linux with Ethernet or Infiniband (OpenMPI):

```
mpicc hello.c -o hello
```

- Running MPI Programs
- for OpenMPI create machine file (hosts to be used)
- define your resources CPU, Cores
- load your environment (mpi-selector)
- Example run (Default network, for example infinband):

- point2point
- Collective: broadcast
- one2all
- all2one
- all2all n+1 -> n-1

{

```
/* C Example */
#include <stdio.h>
#include <mpi.h>
int main (argc, argv)
     int argc;
     char *argv[];
  int rank, size;
  MPI_Init (&argc, &argv); /* starts MPI */
  MPI_Comm_rank (MPI_COMM_WORLD, &rank); /* get current process id
  MPI_Comm_size (MPI_COMM_WORLD, &size); /* get number of processe
  printf( "Hello world from process %d of %d\n", rank, size );
  MPI Finalize();
  return 0:
```

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

ckuelker@hpc> mpirun -np 4 -machinefile machinefile.hpc hello
Process 0 on host01 out of 4
Process 1 on host01 out of 4
Process 3 on host02 out of 4
Process 2 on host02 out of 4

run via scheduler/ queue

qsub -pe nc0 16 ~/bin/hello-world.sh

э

SC11

Christian Külker (Debian Edu)

SC and OSS after K-Computer

Chemnitz 2012 29 / 31

æ

イロト イヨト イヨト イヨト

- Exascale
- Knights Corner
- K Computer
- AMD Interlagos
- Cooling
- Power saving
- Cloud

A .

Christian Külker

Open Source Projects:

- Debian Edu
- CipUX

christian.kuelker@cipworx.org

Occupation:

HPC Project Manager Partnership Program Coordinator Eurotech - ETH Lab - Business Unit HPC

License: GNU General Public License - GNU GPL - version 2; GNU GPL version 2 or (at your opinion) any later version; GNU

Free Document License - GNU FDL - with no invariant sections, version 1.3; GNU FDL with no invariant sections, version 1.3 or

(at your opinion) any later version.

Christian Külker (Debian Edu)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >