Sparse Files

Christian Külker

2023-03-10

Contents

1	Making	3
2	Measure2.1 Apparent Size2.2 Actual Size2.3 Apparent And Actual Size2.3 Apparent And Actual Size	3 3 4 4
	Converting 3.1 To 3.2 From	4 4 4
4	Copying	5
5	Archiving	5
6	Creating A File System Inside	5
7	Enlarge	6
8	Mounting A File System	6
9	Resize A File System	6
10	Links	8
11	History	8
12	Disclaimer of Warranty	9
13	Limitation of Liability	9

Sparse files ___ are files that allocate data to disk space and aggregate empty space (blocks of zero bytes) in the metadata to make more efficient use of file system space. When metadata space is allocated to data, the data is written to the file system and the amount of empty space is reduced. In this way, the reported file size and the actual disk space used differ for sparse files that contain empty space. The size of the file on the file system reaches its maximum when there is no empty data. Therefore, sparse files only make sense for information that has a lot of empty data, or at least a lot of empty data in the beginning. It makes no sense to create a sparse file to be completely filled with data.

The ability to create sparse files depends on the file system. A peculiarity of sparse files is the discrepancy between the reported size (**apparent size**) and the **actual size** of used blocks on the storage media, which makes the use of some commands not intuitive. This document shows how to create sparse files using various tools and how to measure them.

When reading a sparse file, empty metadata is transparently converted to empty blocks filled with zero bytes. Writing does the opposite. On Linux, most modern file systems support sparse files. This includes NTFS, but not HFS+.

A very common use for sparse files is disk images. A disk image is a large file containing data. The data is often a formatted file system. Usually new file systems are mostly empty, so using sparse files for this purpose saves a lot of real disk space until the disk image file system is filled with non-empty data. It should be noted, however, that sparse files are no miracle. If a sparse file is created that is larger than the actual free space of a disk, which is possible, it will grow up to the remaining free space, but not beyond. Of course, planning ahead is important, as running a file system on a disk or within a sparse file that hits the limits of free space is a nightmare, as the type of corruption that can occur is unpredictable.

While creating a sparse file is very efficient, when used as a disk image, a sparse file can become fragmented and less efficient. Filling file systems inside a sparse file can have unexpected effects. Of course, some tools will not indicate that a given file is a sparse file. And when copying or moving, the tool to do the moving or copying needs to be able to handle sparse files. If a tool is used that cannot copy a sparse file, the empty data represented in the metadata of the file system may be omitted, and the result will be a corrupted file or a file whose contents are no longer usable. In a less severe case, a sparse file would be copied to a nonsparse file with a lot of empty space allocated to the disk, which would negate the usefulness of using sparse files. This can happen when using a sparse file aware tool to copy a sparse file from a sparse file aware file system to a non sparse file aware file system.

The following file systems for Linux (according to Wikipedia File Systems) may support sparse files:

BeeGFS

Christian Külker 2/9

- APFS
- V6FS, V7FS
- GFS
- NTFS
- FFS
- UFS1, UFS 2
- LFS
- ext, ext2, ext3, ext4
- NOVA
- F2FS
- Lustre
- NILFS
- · ReiserFS, Reiser4
- OCFS2
- XFS
- JFS
- VxFS
- UDF
- ZFS
- Btrfs
- ReFS
- SquashFS
- · BlueStore/Cephfs

1 Making

Each of the two commands below creates a 128MB sparse file called file.image.

```
truncate -s 128M file.image
dd if=/dev/zero of=file.image bs=1 count=0 seek=128M
```

2 Measure

2.1 Apparent Size

```
du -h --apparent file.image
128M file.image
```

Christian Külker 3/9

2.2 Actual Size

```
du -h file.image
O file.image
```

2.3 Apparent And Actual Size

```
du -h file.image;du -h --apparent file.image
0     file.image
128M     file.image
    # Shows first current size (0) and apparent size (128M)
ls -hls file.image
0 -rw-r--r-- 1 root root 128M Mar 21 14:09 file.image
    # The same for a used sparse file
ls -hls file.image
4.1M -rw-r--r-- 1 root root 1.0G Mar 21 13:20 file.image
```

Some du use --apparent-size instead of --apparent.

3 Converting

3.1 To

Converting files to sparse files only works on supported file systems.

3.2 From

```
cp sparse.image non-sparse.image --sparse=never
```

Christian Külker 4/9

4 Copying

Usually cp can recognize a sparse file. No option is needed. However, if you want to be explicit, the --sparse option can be used. This can also be used to convert a non-sparse file into a sparse file during copying. When using rsync the -S or --sparse option must be set.

```
cp old.image new.image # sparseness of files is the same
cp --sparse=always old.image new.image # old.image could be non-sparse
rsync -S old.image new.image
```

5 Archiving

By default, tar uses non-sparse files. And tar converts sparse files to non-sparse files! To use tar and keep the sparse feature of the files, use the -S option.

This example used the sparse file file.image which contains an XFS file system that uses 3.6M of metadata (which is of course not empty and therefore not sparse).

```
tar -cf file.tar file.image
du -h file.tar --apparent; du -h file.tar
129M    file.tar

129M    file.tar

tar -Scf file.tar file.image
du -h file.tar --apparent; du -h file.tar
3.6M    file.tar
```

6 Creating A File System Inside

```
mkfs.xfs sparse.image
```

Christian Külker 5/9

```
7 log =internal log bsize=4096 blocks=855, version=2
8 = sectsz=512 sunit=0 blks, lazy-count=1
9 realtime =none extsz=4096 blocks=0, rtextents=0
```

```
du -h file.image --apparent; du -h file.image
```

```
1 128M file.image
2 3.6M file.image
```

7 Enlarge

With dd it is possible to grow an existing sparse file. Even if it contains a filesystem.

```
dd if=/dev/zero of=file.image bs=1 count=0 seek=1G
du -h file.image --apparent; du -h file.image
1.0G file.image
3.6M file.image
```

8 Mounting A File System

There is no difference between mounting non-sparse and sparse file systems.

9 Resize A File System

Resizing a file system is a tricky business. In fact, the way to resize a filesystem depends on the filesystem and its tools. Just to see how it is done in this section should not make you assume it is done similarly on another file system. Also be warned, resizing a used filesystem is **risky** and data loss can occur. Better make a validated backup before trying to resize a partition.

While a sparse file containing riserfs can (and should?) be resized while it is **not** mounted. An XFS can only be resized while it is **mounted**.

Christian Külker 6/9

Action	XFS	ReiserFS
create sparse file	not mounted	not mounted
make file system	not mounted	not mounted
grow sparse file	not mounted	not mounted
grow file system	mounted	not mounted

The command to grow a filesystem depends on the filesystem. For xfs it is xfs_growfs for reiserfs it is resize_reiserfs.

```
# Create a 128 MB image
truncate -s 128M file.image
du -h file.image;du --apparent -h file.image
0 file.image
128M file.image
```

```
mkfs.xfs file.image
meta-data=file.image
                               isize=512 agcount=4, agsize=8192 blks
                               sectsz=512 attr=2, projid32bit=1
                                          finobt=1, sparse=0, rmapbt=0,
                              crc=1
   reflink=0
                               bsize=4096 blocks=32768, imaxpct=25
data
                               sunit=0 swidth=0 blks
                               bsize=4096 ascii-ci=0 ftype=1
naming
        =version 2
        =internal log
                               bsize=4096 blocks=855, version=2
log
                                           sunit=0 blks, lazy-count=1
realtime =none
                               extsz=4096
                                           blocks=0, rtextents=0
du -h file.image;du --apparent -h file.image
3.6M
       file.image
128M
       file.image
```

```
# Enlarge the XFS file system from 128MB to 1GB
dd if=/dev/zero of=file.image bs=1 count=0 seek=1G
0+0 records in
0+0 records out
0 bytes copied, 4.7421e-05 s, 0.0 kB/s
du -h file.image;du --apparent -h file.image
3.6M file.image
1.0G file.image
```

Christian Külker 7/9

```
xfs_growfs mnt
meta-data=/dev/loop0
                                             agcount=4, agsize=8192 blks
                                isize=512
                                sectsz=512
                                             attr=2, projid32bit=1
                                crc=1
                                             finobt=1 spinodes=0 rmapbt=0
                                reflink=0
                                bsize=4096
                                             blocks=32768, imaxpct=25
data
                                sunit=0
                                             swidth=0 blks
                                bsize=4096 ascii-ci=0 ftype=1
naming =version 2
log
        =internal
                                bsize=4096 blocks=855, version=2
                                sectsz=512 sunit=0 blks, lazy-count=1
                                             blocks=0, rtextents=0
realtime =none
                                extsz=4096
data blocks changed from 32768 to 262144
du -h file.image;du --apparent -h file.image
4.1M
       file.image
1.0G
        file.image
df -h|grep mnt
/dev/loop0
                       1021M 9.2M 1012M
                                           1% /tmp/SPARSE/mnt
```

```
# Unmount the file system
umount mnt
du -h file.image;du --apparent -h file.image
4.1M file.image
1.0G file.image
```

10 Links

- Wikipedia Sparse File
- Wikipedia File Systems

11 History

Christian Külker 8/9

Version	Date	Notes
0.1.2	2023-03-10	Improve writing
0.1.1	2022-05-20	Improve shell blocks, typos
0.1.0	2022-03-21	Initial release

12 Disclaimer of Warranty

THERE IS NO WARRANTY FOR THIS INFORMATION, DOCUMENTS AND PROGRAMS, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE INFORMATION, DOCUMENT OR THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE INFORMATION, DOCUMENTS AND PROGRAMS IS WITH YOU. SHOULD THE INFORMATION, DOCUMENTS OR PROGRAMS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13 Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE INFORMATION, DOCUMENTS OR PROGRAMS AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE INFORMATION, DOCUMENTS OR PROGRAMS (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE INFORMATION, DOCUMENTS OR PROGRAMS TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Christian Külker 9/9