
Cryptsetup Benchmark

Christian Külker

2024-02-07

Contents
1 Introduction . 1

2 Installation . 2

3 Benchmark . 2
3.1 Understanding the Benchmark Output 4
3.2 Tips for Using Cryptsetup . 4
3.3 Conclusion . 5

4 Understand Existing Setups . 5

5 Missing . 6

6 Packages . 7

7 History . 7

8 Disclaimer of Warranty . 7

9 Limitation of Liability . 7

1 Introduction
Cryptsetup is a utility used in Linux systems for setting up encrypted storage using the
Linux Unified Key Setup (LUKS) format. It offers robust encryption options for securing
data onharddrives, partitions, or even removablemedia. Oneof the key features of Crypt-
setup is its ‘benchmark’ command,whichhelpsusers evaluate theperformanceof various
encryption algorithms on their hardware.

1

Cryptsetup Benchmark 2024-02-07

2 Installation
Before you can use the ‘cryptsetup benchmark’ command, you need to ensure that Crypt-
setup is installed on your system. For Debian you can install it by following these steps:

aptitude install cryptsetup

3 Benchmark
The ‘cryptsetup benchmark’ command is a powerful tool for testing the performance of
different cryptographic algorithms on your system. This is especially useful when decid-
ing which algorithm to use for encrypting your data. Here’s how to use it as root:

1. Run the command inside a terminal as root:

cryptsetup benchmark

2. Examples:

Debian 12 BookwormMachine 1:

cryptsetup benchmark

Tests are approximate using memory only (no storage IO).
PBKDF2-sha1 858081 iterations per second for 256-bit key
PBKDF2-sha256 1138519 iterations per second for 256-bit key
PBKDF2-sha512 983654 iterations per second for 256-bit key
PBKDF2-ripemd160 560735 iterations per second for 256-bit key
PBKDF2-whirlpool 346751 iterations per second for 256-bit key
argon2i 4 iterations, 911848 memory, 4 parallel threads (CPUs) for\
256-bit key (requested 2000 ms time)
argon2id 4 iterations, 904283 memory, 4 parallel threads (CPUs) for\
256-bit key (requested 2000 ms time)
Algorithm | Key | Encryption | Decryption

aes-cbc 128b 521.9 MiB/s 1648.5 MiB/s
serpent-cbc 128b 76.2 MiB/s 305.0 MiB/s
twofish-cbc 128b 179.9 MiB/s 234.9 MiB/s

aes-cbc 256b 395.8 MiB/s 1377.0 MiB/s
serpent-cbc 256b 86.4 MiB/s 306.1 MiB/s
twofish-cbc 256b 185.8 MiB/s 235.0 MiB/s

aes-xts 256b 1466.4 MiB/s 1472.3 MiB/s
serpent-xts 256b 255.3 MiB/s 277.7 MiB/s
twofish-xts 256b 217.4 MiB/s 219.7 MiB/s

Christian Külker 2/7

Cryptsetup Benchmark 2024-02-07

aes-xts 512b 1215.9 MiB/s 1215.5 MiB/s
serpent-xts 512b 271.4 MiB/s 278.7 MiB/s
twofish-xts 512b 212.9 MiB/s 219.7 MiB/s

Debian 12 Bookwormmachine 2 (slower)

cryptsetup benchmark

PBKDF2-sha1 423495 iterations per second for 256-bit key
PBKDF2-sha256 597819 iterations per second for 256-bit key
PBKDF2-sha512 473184 iterations per second for 256-bit key
PBKDF2-ripemd160 318522 iterations per second for 256-bit key
PBKDF2-whirlpool 189959 iterations per second for 256-bit key
argon2i 4 iterations, 303407 memory, 4 parallel threads (CPUs) for\
256-bit key (requested 2000 ms time)
argon2id 4 iterations, 307680 memory, 4 parallel threads (CPUs) for\
256-bit key (requested 2000 ms time)
Algorithm | Key | Encryption | Decryption

aes-cbc 128b 99.6 MiB/s 107.8 MiB/s
serpent-cbc 128b 50.2 MiB/s 65.1 MiB/s
twofish-cbc 128b 116.0 MiB/s 132.9 MiB/s

aes-cbc 256b 82.0 MiB/s 85.3 MiB/s
serpent-cbc 256b 56.6 MiB/s 65.1 MiB/s
twofish-cbc 256b 124.5 MiB/s 132.9 MiB/s

aes-xts 256b 110.4 MiB/s 108.8 MiB/s
serpent-xts 256b 58.7 MiB/s 63.5 MiB/s
twofish-xts 256b 123.3 MiB/s 129.9 MiB/s

aes-xts 512b 87.7 MiB/s 86.2 MiB/s
serpent-xts 512b 64.3 MiB/s 63.6 MiB/s
twofish-xts 512b 130.8 MiB/s 129.6 MiB/s

Debian 11 Bullseye machine 3 (slowest - Raspberry Pi 4)

cryptsetup benchmark

Tests are approximate using memory only (no storage IO).
PBKDF2-sha1 347210 iterations per second for 256-bit key
PBKDF2-sha256 579964 iterations per second for 256-bit key
PBKDF2-sha512 468951 iterations per second for 256-bit key
PBKDF2-ripemd160 293225 iterations per second for 256-bit key
PBKDF2-whirlpool 121138 iterations per second for 256-bit key
argon2i 4 iterations, 278106 memory, 4 parallel threads (CPUs) for\
256-bit key (requested 2000 ms time)

Christian Külker 3/7

Cryptsetup Benchmark 2024-02-07

argon2id 4 iterations, 284125 memory, 4 parallel threads (CPUs) for\
256-bit key (requested 2000 ms time)
Algorithm | Key | Encryption | Decryption

aes-cbc 128b 23.2 MiB/s 79.1 MiB/s
serpent-cbc 128b 35.9 MiB/s 38.3 MiB/s
twofish-cbc 128b 59.0 MiB/s 61.8 MiB/s

aes-cbc 256b 17.4 MiB/s 60.0 MiB/s
serpent-cbc 256b 37.0 MiB/s 38.4 MiB/s
twofish-cbc 256b 59.8 MiB/s 61.9 MiB/s

aes-xts 256b 88.1 MiB/s 77.3 MiB/s
serpent-xts 256b 36.3 MiB/s 38.7 MiB/s
twofish-xts 256b 62.2 MiB/s 62.1 MiB/s

aes-xts 512b 66.6 MiB/s 58.3 MiB/s
serpent-xts 512b 38.0 MiB/s 38.4 MiB/s
twofish-xts 512b 63.9 MiB/s 62.0 MiB/s

3. The output will display a list of algorithms along with their encryption and decryp-
tion speeds. It typically includes algorithms like AES, Serpent, Twofish, etc.

4. Lookat the results to determinewhich algorithmprovides a goodbalancebetween
security and performance for your needs.

3.1 Understanding the Benchmark Output
The output of ‘cryptsetup benchmark’ are spitted in two sections. The firstmeasure hash-
ing in ‘iterations per second’ (the bigger the number the better) and the second measure
different algorithms and includes several columns:

• Algorithm: The encryption algorithm (e.g., aes, serpent).
• Key: The size of the key used by the algorithm.
• Encryption Speed: The speed at which data can be encrypted.
• Decryption Speed: The speed at which data can be decrypted.

Higher speeds indicate better performance. However, remember that the most perfor-
mant algorithmmay not always be themost secure, so balance is key if performance is an
issue.

3.2 Tips for Using Cryptsetup
• Choose the Right Algorithm: Use the benchmark results to choose an encryption
algorithm that suits your balance of security and performance.
• Backup Keys: Always backup your encryption keys in a secure location.

Christian Külker 4/7

Cryptsetup Benchmark 2024-02-07

• Regular Updates: Keep Cryptsetup and your system updated for the latest security
patches. Make backups of all you data at least before a major cryptsetup update.

3.3 Conclusion
The ‘cryptsetup benchmark’ command in Debian 12 Bookworm is an invaluable tool for
anyone looking to secure their data with encryption. By understanding and utilizing this
command, you canmake informeddecisions about the encryption algorithmsbest suited
for your storage hardware and security requirements. Remember, while performance is
important, it should not compromise the security of your encrypted data.

4 Understand Existing Setups
1. Chose the correct partition

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda 8:0 0 119.2G 0 disk
├─sda1 8:1 0 487M 0 part /boot
├─sda2 8:2 0 1K 0 part
└─sda5 8:5 0 118.8G 0 part
└─sda5_crypt 254:0 0 118.7G 0 crypt
├─z2--vg-root 254:1 0 117.8G 0 lvm /
└─z2--vg-swap_1 254:2 0 976M 0 lvm [SWAP]

2. In the above setup /dev/sda5 is the correct one. Then dump the existing values.
In this output some keys are removed. So your output should show keys like ‘Salt’,
‘Digest’, 

cryptsetup luksDump /dev/sda5

LUKS header information
Version: 2
Epoch: 3
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
0: crypt

cipher: aes-xts-plain64

Christian Külker 5/7

Cryptsetup Benchmark 2024-02-07

Keyslots:
0: luks2

Key: 512 bits
Priority: normal
Cipher: aes-xts-plain64
Cipher key: 512 bits
PBKDF: argon2id
AF hash: sha256

Tokens:
Digests:
0: pbkdf2

Hash: sha256

3. The output will display detailed information about the LUKS container, including
the version of LUKS, the used key size, the cipher (encryption algorithm), and the
hash used.

• Look for the Cipher name to identify the encryption algorithm (e.g., aes).
• The Hash spec field shows the hashing algorithm used (e.g., sha256).

5 Missing
Cryptsetup is a versatile tool with a range of functionalities beyond just checking encryp-
tion algorithms and hashing. Here are some additional aspects and capabilities of Crypt-
setup that are worth noting and that are not covered in this document:

• Key Management: LUKS supports multiple key slots, allowing multiple
passphrases to unlock the same volume. This feature is useful for both personal
and shared environments, where different users can have their own passphrase.
• Encryption of Swap and Temporary Files: Cryptsetup can be used to encrypt
swap partitions and other temporary file storage, which is crucial for maintaining
security, especially in systems that handle sensitive data.
• Integration with System Boot Process: Cryptsetup can integrate with the sys-
tem’s boot process for full disk encryption, including encrypting the root partition.
This can be configured to require a passphrase at boot time, enhancing security.
Tools like dropbear can be used to do this over SSH.
• Header Backup and Restoration: It’s possible to backup and restore the LUKS
header using Cryptsetup. This is a critical step in data recovery scenarios, as dam-
age to the header can render the encrypted data inaccessible.
• Compatibility with Other Tools: Cryptsetup is compatible with other Linux tools
and utilities, such as Logical VolumeManager (LVM),making it suitable for complex

Christian Külker 6/7

Cryptsetup Benchmark 2024-02-07

storage setups.
• Support for Different Cryptographic Backends: Cryptsetup can use different
cryptographic backends like OpenSSL, offering flexibility in cryptographic imple-
mentations. However this needs to be done at compile time. For OpenSSL it is
done with the configure option --with-crypto_backend=openssl .

6 Packages

Debian # cryptsetup

Bookworm 12 2:2.6.1-4~deb12u1
Bullseye 11 2:2.3.7-1+deb11u1

7 History

Version Date Notes

0.1.0 2024-02-07 Initial release

8 Disclaimer of Warranty
THERE IS NO WARRANTY FOR THIS INFORMATION, DOCUMENTS AND PROGRAMS, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPTWHENOTHERWISESTATED INWRITINGTHECOPYRIGHTHOLDERSAND/OROTHERPARTIESPROVIDETHE INFORMATION,DOC-
UMENTOR THE PROGRAM “AS IS”WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSEDOR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIEDWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY ANDPERFORMANCEOF THE INFORMATION, DOCUMENTS ANDPROGRAMS ISWITH YOU. SHOULDTHE INFORMATION, DOCUMENTS
OR PROGRAMS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

9 Limitation of Liability
INNOEVENTUNLESSREQUIREDBYAPPLICABLE LAWORAGREEDTO INWRITINGWILL ANYCOPYRIGHTHOLDER,ORANYOTHERPARTY
WHO MODIFIES AND/OR CONVEYS THE INFORMATION, DOCUMENTS OR PROGRAMS AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE INFORMATION, DOCUMENTS OR PROGRAMS (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOUOR THIRD PARTIES OR A FAILURE OF THE INFORMATION, DOCUMENTS OR PROGRAMS TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Christian Külker 7/7

	Introduction
	Installation
	Benchmark
	Understanding the Benchmark Output
	Tips for Using Cryptsetup
	Conclusion

	Understand Existing Setups
	Missing
	Packages
	History
	Disclaimer of Warranty
	Limitation of Liability

