
Managing Dependencies With Poetry

Christian Külker

2023-03-07

Contents
1 Installation . 1

2 One File To Bind Them All . 2

3 Installing the dependencies . 3

4 Considerations . 5

5 History . 6

6 Disclaimer of Warranty . 6

7 Limitation of Liability . 6

Like many other fancy tools, poetry is used to bypass your distribution’s well-maintained
package manager, and it is called “Dependency Management for Python” or as python-
poetry.org describes it: “Python packaging and dependency management made easy”.

Unlike pipenv, poetry is not included in Debian, so it must be downloaded from an unsu-
pervised location on the Internet: github or pypi.

1 Installation
We omit the insecure curl method. In the github README you can read the warning “Be
aware, however, that it will also install poetry’s dependencies which may cause con-
flicts.”How is it that a dependency manager has to be afraid of conflicting dependencies?
Isn’t that the reason for using it in the first place? To me, this reads like prose, not poetry.
Welcome to the new era of package “managers”!

1

https://python-poetry.org/
https://python-poetry.org/
https://python-poetry.org/
https://pypi.org/project/pipenv/
https://python-poetry.org/
https://github.com/python-poetry/poetry
https://pypi.org/project/poetry/
https://github.com/python-poetry/poetry

Managing Dependencies With Poetry 2023-03-07

$ python3 -m pip install --user poetry
[...]
Successfully installed attrs-19.3.0 cachecontrol-0.12.6 cachy-0.3.0 \
certifi-2020.4.5.1 cffi-1.14.0 chardet-3.0.4 cleo-0.7.6 clikit-0.4.3 \
cryptography-2.9.2 html5lib-1.0.1 idna-2.9 importlib-metadata-1.1.3 \
jeepney-0.4.3 jsonschema-3.2.0 keyring-20.0.1 lockfile-0.12.2 \
msgpack-1.0.0 pastel-0.2.0 pexpect-4.8.0 pkginfo-1.5.0.1 \
poetry-1.0.5 ptyprocess-0.6.0 pycparser-2.20 pylev-1.3.0

2 One File To Bind Them All
The poetry tool takes care of installing, building, and packaging dependencies. It
requires only one file: the PEP518 pyproject.toml and replaces setup.py ,
requirements.txt , setup.cfg , MANIFEST.in and pipfile . Note that not all
files are needed by other dependency managers.

[tool.poetry]
name = "example-pkg-ckuelker"
version = "0.0.1"
description = "A small example package"
license = "GPLv3"
authors = [

"Christian Külker <test-pypi-org@c8i.org>",
]
readme = 'README.md' # Markdown files are supported
repository = "https://github.com/ckuelker/python-packaging-tutorial-
example-package"
homepage = "https://github.com/ckuelker/python-packaging-tutorial-
example-package"
keywords = ['packaging', 'tutorial']

[tool.poetry.dependencies]
python = "~2.7 || ^3.2" # Compatible python versions must be declared here
toml = "^0.9"
Dependencies with extras
requests = { version = "^2.13", extras = ["security"] }
Python specific dependencies with prereleases allowed
pathlib2 = { version = "^2.2", python = "~2.7", allow-prereleases = true }
Very "secure" Git dependencies
cleo = { git = "https://github.com/sdispater/cleo.git", branch = "master" }

Christian Külker 2/6

https://python-poetry.org/
https://www.python.org/dev/peps/pep-0518/

Managing Dependencies With Poetry 2023-03-07

Optional dependencies (extras)
pendulum = { version = "^1.4", optional = true }

[tool.poetry.dev-dependencies]
pytest = "^3.0"
pytest-cov = "^2.4"

[tool.poetry.scripts]
my-script = 'my_package:main'

3 Installing the dependencies

poetry install
Updating dependencies
Resolving dependencies... (21.7s)

Writing lock file

Package operations: 9 installs, 5 updates, 0 removals

- Updating zipp (3.1.0 -> 1.2.0)
- Installing atomicwrites (1.4.0)
- Updating cryptography (2.9.2 -> 2.8)
- Installing more-itertools (5.0.0)
- Installing pluggy (0.13.1)
- Installing py (1.8.1)
- Installing coverage (4.5.4)
- Updating idna (2.9 -> 2.8)
- Installing pyopenssl (19.1.0)
- Installing pytest (3.10.1)
- Updating urllib3 (1.25.9 -> 1.24.3)
- Installing pytest-cov (2.8.1)
- Updating requests (2.23.0 -> 2.21.0)
- Installing toml (0.9.6)

This creates a large poetry.lock file. Unlike working with setup.py , working with
test.pypi.org is not so straightforward.

$ poetry build
Building example-pkg-ckuelker (0.0.1)

Christian Külker 3/6

https://test.pypi.org

Managing Dependencies With Poetry 2023-03-07

[ModuleOrPackageNotFound]
No file/folder found for package example-pkg-ckuelker

Removing the name from the username creates the package.

$ poetry build
Building example-pkg (0.0.1)
- Building sdist
- Built example-pkg-0.0.1.tar.gz

- Building wheel
- Built example_pkg-0.0.1-py2.py3-none-any.whl
$ tree
dist
├── example_pkg-0.0.1-py2.py3-none-any.whl
├── example-pkg-0.0.1.tar.gz

However, these do not conform to the test.pypi.org format:

$ tree
dist
├── example_pkg_ckuelker-0.0.1-py3-none-any.whl
└── example-pkg-ckuelker-0.0.1.tar.gz

Renaming the directory from example_pkg to example_pkg_ckuelker did the trick:

$ poetry build
Building example-pkg_ckuelker (0.0.1)
- Building sdist
- Built example-pkg_ckuelker-0.0.1.tar.gz

- Building wheel
- Built example_pkg_ckuelker-0.0.1-py2.py3-none-any.whl
$ tree dist
dist
├── example_pkg_ckuelker-0.0.1-py2.py3-none-any.whl
└── example-pkg_ckuelker-0.0.1.tar.gz

If your project has a unique name, testing with poetry works, if not, renaming is the way
to go: this disqualifies poetry for use in package tutorials.

An alternative is to create a symbolic link.

Christian Külker 4/6

https://test.pypi.org
https://python-poetry.org/
https://python-poetry.org/

Managing Dependencies With Poetry 2023-03-07

ln -s example_pkg example_pkg_YOUR_USERNAME

To install the package and upload it to test.pypi.org, see packaging-python-projects.

4 Considerations
Reading the reasoning behind poetry gives the impression of anot inventedhereproject:
about pipenv “I do not like the CLI it provides, or some of the decisions made, and I think
we canmake a better andmore intuitive one.” Intuitiveness is best for software you write
yourself. Writing a tool because dependency management is “convoluted” and “hard to
understand” for newcomers is a non-argument. Dependencymanagement is always hard
to understand. The project claims “[] there is no reliable tool for properly resolving
dependencies in Python”. I doubt this and my answer is: there is Debian. Usually what I
expect is: Feature X is missing, so I wrote software Y. None of this seems to be a reason for
this project.

However, theproject is correct inpointingoutproblemswith pipenv installing oslo.utils==1.4.0 .
Meanwhile, poetry also has its problems (and bad error messages).

poetry add oslo.utils=1.4.0

[InvalidCharInStringError]
Invalid character '\n' in string at line 11 col 81

Which has nothing to do with oslo , only a ” (quotation mark) was missing in line 11 of
pyproject.toml . Who would have guessed that? Actually, it added oslo just fine
with the ” (quote character) fixed:

poetry add oslo.utils=1.4.0

Updating dependencies
Resolving dependencies... (14.9s)

Writing lock file

Package operations: 0 installs, 1 update, 0 removals

- Updating oslo.i18n (4.0.1 -> 2.1.0)

Not sure if this is an update though. I would have expected 2.1.0 -> 4.0.1 . Looks
more like a downgrade

Christian Külker 5/6

https://test.pypi.org
../Package/packaging-python-projects.html
https://python-poetry.org/
https://pypi.org/project/pipenv/
https://python-poetry.org/

Managing Dependencies With Poetry 2023-03-07

But the colorful console characters look very cheerfully.

5 History

Version Date Notes

0.1.4 2023-03-07 Improve writing
0.1.3 2022-05-25 Change comments, replace shell with bash
0.1.2 2022-05-09 Fix missing quotes in toml section
0.1.1 2020-09-05 Fix heading levels, fix and addmore links
0.1.0 2020-05-18 Initial release

6 Disclaimer of Warranty
THERE IS NO WARRANTY FOR THIS INFORMATION, DOCUMENTS AND PROGRAMS, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPTWHENOTHERWISESTATED INWRITINGTHECOPYRIGHTHOLDERSAND/OROTHERPARTIESPROVIDETHE INFORMATION,DOC-
UMENTOR THE PROGRAM “AS IS”WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSEDOR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIEDWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY ANDPERFORMANCEOF THE INFORMATION, DOCUMENTS ANDPROGRAMS ISWITH YOU. SHOULDTHE INFORMATION, DOCUMENTS
OR PROGRAMS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

7 Limitation of Liability
INNOEVENTUNLESSREQUIREDBYAPPLICABLE LAWORAGREEDTO INWRITINGWILL ANYCOPYRIGHTHOLDER,ORANYOTHERPARTY
WHO MODIFIES AND/OR CONVEYS THE INFORMATION, DOCUMENTS OR PROGRAMS AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE INFORMATION, DOCUMENTS OR PROGRAMS (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOUOR THIRD PARTIES OR A FAILURE OF THE INFORMATION, DOCUMENTS OR PROGRAMS TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Christian Külker 6/6

	Installation
	One File To Bind Them All
	Installing the dependencies
	Considerations
	History
	Disclaimer of Warranty
	Limitation of Liability

