Non-Uniform Memory Access

Christian Külker

2024-03-07

Contents

1 Installing ... 2
2 Installing NUMA Helper Tools For Debian 3
3 lscpu ... 3
4 Compiling And Installing numactl From Source 4
5 Numactl Commands ... 5
 5.1 migratepages ... 5
 5.2 numastat .. 5
 5.3 numactl ... 5
 5.4 memhog ... 6
 5.5 numademo .. 6
6 Numatop .. 7
7 Further Reading .. 7
8 History .. 7
9 Disclaimer of Warranty ... 7
10 Limitation of Liability ... 8

Non-uniform memory access (NUMA) is a design specification of some modern multiprocess-}
ning architectures that, unlike uniform memory access (UMA), does not allow all CPUs to
access all memory equally. Usually this is due to the fact that each CPU has some mem-
ory attached to it. This does not necessarily mean that this memory cannot be accessed
by processes from other CPUs, but accessing the memory has some performance penalty.
Because building a NUMA architecture is cheaper and still performs well if the programs are carefully designed, this design is quite popular in high performance computing (HPC).

The Linux 2.5 kernel started with basic NUMA support, which was improved in 3.8. Later, in 3.13, NUMA-related performance enhancements were added, such as memory pages shared between processes, huge pages, and `sysctl` support.

1 Installing

The content of the installation varies. It is recommended to either use a new distribution or even compile `numactl` from source, as this includes the `numademo` command.
2 Installing NUMA Helper Tools For Debian

<table>
<thead>
<tr>
<th>Package</th>
<th>Stretch 9.12</th>
<th>Buster 10</th>
<th>Bullseye 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>numactl</td>
<td>2.0.11-2.1</td>
<td>2.0.12-1</td>
<td>2.12-1+b1</td>
</tr>
<tr>
<td>numad</td>
<td>0.5+20150602-5</td>
<td>0.5+20150602-5</td>
<td>0.5+20150602-7</td>
</tr>
<tr>
<td>numatop</td>
<td>1.0.4-3</td>
<td>2.1-2</td>
<td>2.1-4</td>
</tr>
<tr>
<td>util-linux</td>
<td>2.29.2-1+deb9u1</td>
<td>2.33.1-0.1</td>
<td>2.36.1-8+deb11u1</td>
</tr>
</tbody>
</table>

Tools and their package or source:

<table>
<thead>
<tr>
<th>Command</th>
<th>Package</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>lscpu</td>
<td>util-linux</td>
<td>util-linux</td>
</tr>
<tr>
<td>memhog</td>
<td>numactl</td>
<td>numactl</td>
</tr>
<tr>
<td>numastat</td>
<td>numactl</td>
<td>numactl</td>
</tr>
<tr>
<td>migspeed</td>
<td>numactl</td>
<td>numactl</td>
</tr>
<tr>
<td>migratepages</td>
<td>numactl</td>
<td>numactl</td>
</tr>
<tr>
<td>numademo</td>
<td>n.a.</td>
<td>numactl</td>
</tr>
<tr>
<td>numatop</td>
<td>numatop</td>
<td>numatop</td>
</tr>
<tr>
<td>numad</td>
<td>numad</td>
<td>numad</td>
</tr>
</tbody>
</table>

- numademo is part of numactl but not packaged

3 lscpu

The tool lscpu can be used to understand the number of NUMA nodes.

```bash
# Laptop 2008
lscpu|grep NUMA
NUMA node(s): 1
NUMA node0 CPU(s): 0,1
# Desktop 2015
lscpu|grep NUMA
NUMA node(s): 1
NUMA node0 CPU(s): 0-7
```
Standard hardware not used for HPC typically has only one NUMA node. Typical X86 NUMA hardware has 2 or more CPUs and 2 or more memory banks, one attached to each CPU.

It also can be useful to understand the architecture in general as such, because “CPU’s” are not equal.

Desktop:

```
ls cpu | grep -E '^Thread|^Core|^Socket|^CPU\(' | grep -v scaling
CPU(s): 4
Thread(s) per core: 2
Core(s) per socket: 2
Socket(s): 1
```

Raspberry Pi:

```
ls cpu | grep -E '^Thread|^Core|^Socket|^CPU\(' | grep -v scaling
CPU(s): 4
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
```

4 Compiling And Installing numactl From Source

```
aptitude install autoconf automake
git clone https://github.com/numactl/numactl.git
cd numactl
./autogen.sh
./configure
make
make install
```
5 Numactl Commands

5.1 migratepages

The man pages says:

“migratepages moves the physical location of a processes pages without any changes of the virtual address space of the process. Moving the pages allows one to change the distances of a process to its memory. Performance may be optimized by moving a processes pages to the node where it is executing.”

5.2 numastat

The numastat command shows per-NUMA statistics for processes and the operating system.

Example for one CPU:

```
numastat

    numa_hit        node0  366309
    numa_miss       0
    numa_foreign    0
    interleave_hit  7846
    local_node      366309
    other_node      0
```

5.3 numactl

The numactl command controls the NUMA policy for processes or shared memory.

Example for one CPU:

```
umactl --show
policy: default
    preferred node: current
    physcpubind: 0 1 2 3 4 5
cpubind: 0
nodebind: 0
membind: 0

numactl --hardware
available: 1 nodes (0-0)
```

Christian Külker
5.4 memhog

The `memhog` command allocates memory with a policy for testing. For some reason, the Debian 10 Buster release does not include a man page. However, there is a [page] online (http://man7.org/linux/man-pages/man8/memhog.8.html).

Allocate a 1G region, (implicit) default policy, repeat test 4 times

```
memhog -r4 1G
```

5.5 numademo

The `numademo` command is **not** available as a Debian package, it is available as `numctl` source code.

On an old laptop from 2008 with Debian 8.11 Jessie (used with a compiled `numademo` executable from `numactl` source from before 2020, maybe in 2016):

```
./numademo -S 100M
1 nodes available
memory with no policy memset Avg 2304.98 MB/s Max 2310.25 MB/s ...
lmemory memset Avg 2302.23 MB/s Max 2310.05 MB/s ...
memory interleaved on all nodes memset Avg 2295.28 MB/s Max 2307.35 ...
memory on node 0 memset Avg 2303.58 MB/s Max 2306.69 MB/s ...
[...] 
```

Running this test on Debian 11 Bullseye on a 2013 desktop or 2015 laptop, or on the same 2008 laptop (Debian 8.11 Jessie) the newer version gives:
/numademo -S 100M
A minimum of 2 nodes is required for this test.

It seems that the minimum requirement for the test changed.

6 Numatop

This utility requires a supported CPU. If executed on an unsupported CPU, it will indicate that:

```
numatop -s low -l 2 -f /tmp/warn.log
CPU is not supported!
```

7 Further Reading

- NUMA - hpc wiki info
- NUMA - wikipedia
- github

8 History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1.5</td>
<td>2024-03-07</td>
<td>Add architecture example for lscpu</td>
</tr>
<tr>
<td>0.1.4</td>
<td>2023-03-11</td>
<td>Linux note, minor improvements in typeface</td>
</tr>
<tr>
<td>0.1.3</td>
<td>2023-03-10</td>
<td>Improve writing, move history</td>
</tr>
<tr>
<td>0.1.2</td>
<td>2022-05-17</td>
<td>Change shell blocks to bash block, history, dots description, Debian helper tools table, +lscpu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update for Debian 11 Bullseye</td>
</tr>
<tr>
<td>0.1.1</td>
<td>2020-05-01</td>
<td>Update for Debian 10 Buster</td>
</tr>
<tr>
<td>0.1.0</td>
<td>2016-03-24</td>
<td>Initial release</td>
</tr>
</tbody>
</table>

9 Disclaimer of Warranty

THERE IS NO WARRANTY FOR THIS INFORMATION, DOCUMENTS AND PROGRAMS, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE INFORMATION, DOCUMENTS AND PROGRAMS "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS INFORMATION, DOCUMENTS OR PROGRAMS, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
UMENT OR THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE INFORMATION, DOCUMENTS AND PROGRAMS IS WITH YOU. SHOULD THE INFORMATION, DOCUMENTS OR PROGRAMS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

10 Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE INFORMATION, DOCUMENTS OR PROGRAMS AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE INFORMATION, DOCUMENTS OR PROGRAMS (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE INFORMATION, DOCUMENTS OR PROGRAMS TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.